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2 MATHEMATICAL MODEL 
 
This Chapter provides a description of the governing equations that are the basis for the 
MOUSER models.   A Notation list is given at the end of the Chapter. 
 
2.1 Advective-dispersive-reactive equation  
 
While originally intended for the analysis of low permeability media, the models implemented in 
MOUSER are applicable to any physical system described by the one-dimensional form of the 
advective-dispersive-reactive (ADR) equation and the specified boundary conditions.  The 
general form of the ADRE used in this work is:  
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where C is the dissolved phase resident contaminant concentration, t is time, x is distance from 
the domain entrance, v is the fluid velocity in the x-direction, D is the dispersion coefficient 
(includes hydrodynamic dispersion and molecular diffusion), µa and µs are first-order decay 
coefficients for the aqueous and sorbed phases, respectively,  ρb is the bulk density, n is the 
porosity, and S is the sorbed phase mass fraction. S is understood to incorporate the contaminant 
mass residing in all immobile compartments, except for separate nonaqueous phase liquids 
(NAPL), which are assumed to be absent.   
 
A schematic of a typical application (a vertical barrier) showing the coordinate system is 
included in Figure 2.1.   Other applications are discussed in Chapter 4. 
  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1 Schematic of a typical barrier or treatment wall application 
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The velocity may be specified directly or computed from one of the following expressions of 
Darcy’s Law: 

n
Kiv −=      (2.2a) 

nA
Qv −=      (2.2a) 

n
qv −=      (2.2b) 

 
where K is the hydraulic conductivity of the porous medium, i is the average hydraulic gradient 
across the domain, Q is the total volumetric flow into the domain, A is the total cross-sectional 
area normal to flow, and q is the specific discharge (Darcy velocity) into the domain,  . 
 
The dispersion coefficient is a lumped parameter that represents the combined effects of 
molecular diffusion and hydrodynamic mixing: 
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where al is the barrier longitudinal dispersivity, Dd is the contaminant liquid diffusion coefficient, 
and Hp is the diffusion hindrance factor.  The interpretation of these parameters is discussed in 
Chapter 4. 
 
  
2.2 Initial conditions 
 
Most of the models implemented in MOUSER incorporate a uniform concentration initial 
condition:  
 

iCtxC == )0,(       (2.4) 
 
where Ci is the initial contaminant concentration within the domain.  Many of the particular 
models require Ci = 0. 
 
2.3 Entrance boundary conditions 
 
Two boundary conditions (BCs) are required to solve the one-dimensional ADRE.  The selection 
of the appropriate BCs depends upon the system geometry and the degree of advection 
dominance, which can be considered in terms of the dimensionless Peclet number (Pe): 
 

D
vLPe =       (2.5) 
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where L is the domain length. 
 
The entrance BC defines the condition at x = 0.  Several alternatives are implemented in 
MOUSER, which facilitates application to a variety of advection- and diffusion-dominated 
scenarios. 
 
2.3.1 Constant concentration 
 
For many problems of interest, it is common to specify the entrance boundary as a constant 
concentration: 
 

0),0( CtxC ==       (2.6) 
 
where C0 is the concentration at the entrance boundary.   
 
2.3.2 Danckwerts 
 
For advection-dominated transport in laboratory columns, several researchers have argued that 
the following 3rd-type “Danckwerts” BC is most appropriate (e.g., Danckwerts, 1953): 
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Eq. 2.7 was developed by performing a mass balance across the domain entrance and is 
interpreted to represent a transition from pure advection to advective-dispersive transport.   
 
2.3.3  Finite mass 
 
In analyzing of contaminant migration across a landfill liner, Rowe and Booker (1985) defined a 
boundary condition based on a declining source of contaminant mass within the landfill.  Such a 
condition may be generalized to a vertical barrier or laboratory column by assuming a fixed 
initial mass of contaminant within a mixing zone at the domain entrance, expressed as: 
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where C0  is the initial concentration in the mixing zone and Hf   is the width in the x-direction of 
the mixing zone (corrected by the ratio of the mixing zone porosity to the domain porosity, if 
different). 
 
While such the condition represented by Eq. 2.8 does not account for concentration gradients or 
fluctuations within the entrance mixing zone, it may be more realistic than the assumption of an 
unchanging contaminant concentration at the domain entrance. 
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2.3.4  Declining concentration 
 
When a contaminant is subject to a first-order decay and the entrance zone is not replenished by 
an active source, the BC is expressed by: 
 

)exp(),0( 0 tCtC sλ−=      (2.9) 
 
where λs  is the decay coefficient for the contaminant source (not necessarily the same as the 
domain interior). 
 
A general time-varying condition may also be defined.  For convenience, a second-order 
polynomial is used in MOUSER: 
 
 

2
210),0( tPtPCtC ++=     (2.10) 

 
where C0 is the initial entrance concentration, and P1, and P2 are known constants. 
 
2.4 Exit boundary conditions 
 
The exit BC is defined at x = L.  As with the entrance BC, there are several options supported by 
MOUSER.  In general, the importance of the exit BC is highly dependent on the degree of 
advection-dominance.  For low flow systems (diffusion-dominated) the solutions are highly 
sensitive to the specified exit condition.  A schematic of several of the more common conditions 
is shown in Figure 2.2. 
 
2.4.1 Constant concentration 
 
A constant concentration may be assumed at the domain exit: 
 

LCtLC =),(      (2.11) 
 
where CL is the constant concentration outside the barrier. 
 
Eq. 2.11 was originally implemented to address the scenario where the influence of advection is 
much greater on the exit side of a low permeability barrier (versus the interior of the barrier), 
resulting in a zero concentration condition.  The numerical version of MOUSER has been 
extended to allow the specification of any nonnegative concentration.  The zero concentration 
exit BC (Figure 2.2b) implies that the contaminant is rapidly transported away from the domain 
as it emerges, and may be referred to as a “perfect flushing” condition.  For low permeability 
barriers, such a condition is very conservative in that it results in the maximum concentration 
gradient at the barrier boundary, providing a greater driving force for diffusion.  
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Figure 2.2 Schematic of exit boundary conditions for constant concentration source and 
moderate Pe (a = zero concentration, b = semi-infinite, c = zero gradient, d = mixing zone) 
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2.4.2 Semi-infinite domain 
 
A popular strategy for modeling transport in porous media is to set the domain boundary at 
infinity, resulting in a condition that can be modeled by: 
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The implication of the semi-infinite condition (Figure 2.2a) is that the exit boundary has 
negligible impact on transport; i.e., the medium behaves as if it were continuous at the boundary.  
This condition is reasonable if the transport conditions on the exit side of the domain are 
comparable to conditions within the domain.   
 
2.4.3 Zero gradient 
 
For laboratory-scale problems characterized by advection-dominated transport, some 
investigators have advocated a zero gradient condition for the exit boundary (e.g., Brenner, 
1961): 
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For laboratory columns, there is disagreement regarding the merits of the above condition (Figure 
2.2c) versus the semi-infinite condition (Eq. 2.12).   For conditions where diffusive transport 
dominates, this condition is usually inapplicable because it implies a zero concentration gradient 
and consequently no diffusive flux at the domain exit. 
 
2.4.4  Exit mixing zone 
 
For landfill applications, Rowe and Booker (1985) proposed the following exit condition: 
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where nb is the porosity of a completely mixed transition zone adjacent to the barrier exit, hb is 
the x-dimension of the transition zone, Wb is the lateral dimension of the transition zone, and vb is 
the velocity of groundwater flushing the transition zone. 
 
While less intuitively meaningful when applied to a vertical wall or column, Eq. 2.14 (Figure 
2.2d) provides for some flexibility in adjusting the boundary condition between the limiting 
conditions of zero concentration and zero gradient.   As the ratio vb /Wb is decreased, the 
boundary condition converges to the zero gradient condition, while as vb /Wb is increased, the 
condition converges to a constant zero concentration boundary.   A more detailed discussion of 
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this condition for barrier applications is included in Chapter 4.  A discussion of slurry wall 
applications is also provided by Rabideau and Khandelwal (1998b).  
 
2.5 Single solute sorption models 
 
2.5.1 Equilibrium models 
 
When mass transfer between the aqueous and stationary phases is represented as an equilibrium 
(i.e., fast) process, the ADRE can be reduced to:  
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where Rf is the retardation factor, defined as: 
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with the form of the partial derivative dependent on the specified isotherm expression. 
 
MOUSER provides several options for nonlinear sorption, including the 1-parameter (linear) 
isotherm, the 2-parameter Freundlich and Langmuir isotherms, and the 3-parameter Toth 
isotherm (e.g., Kinniburgh, 1986): 
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where Se is the sorbed phase concentration in equilibrium with the dissolved concentration C, Kd 
is the linear distribution coefficient, KF and nF are the Freundlich parameters, Q0 and b are 
parameters used in both the Langmuir and Toth isotherms, and nT is the third Toth parameter.   
 
Substitution of any of the nonlinear expressions (Eqs. 2.18-2.20) into the ADRE (Eq. 2.1) results 
in a retardation factor (Eq. 2.16) that is a function of the concentration, rendering the governing 
partial differential equation nonlinear and necessitating the use of a numerical solution technique.  
When the linear isotherm is specified, the governing ADRE remains linear (and more amenable 
to analytical solution).  For the linear case, the retardation factor reduces to: 
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All three isotherms reduce to the linear expression for certain values of the parameters (e.g., nF = 
1 for the Freundlich case). 
 
2.5.2 Nonequilibrium models 
 
Under conditions where the sorption reaction is not well represented as an equilibrium process, a 
first-order mass transfer model may be used:  
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where α is the sorption rate coefficient, and the form of Se dependent on the specified isotherm. 
 
An alternative model for linear nonequilibrium considers sorption and desorption as 
simultaneous chemical reactions, each characterized by a respective rate coefficient, expressed 
as:  
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where kf   and kr  are forward (sorption) and reverse (desorption) rate coefficients, respectively.   
For linear sorption, Eq. 2.22 and Eq. 2.23 are mathematically equivalent if α is equated to kr and 
Kd is equated to  kf /kr.  For this reason, subsequent discussions of nonequilibrium sorption are 
considered in terms of the more general Eq. 2.22. 
 
2.5.3 Effective decay 
 
The single solute ADR equation includes decay in both the aqueous and solid phases.  When a 
linear isotherm is applicable, the decay terms can be combined into a single “effective” decay 
constant, leading to a simplified equation in which the sorbed phase is eliminated: 
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2.6 Multi-solute models 
 
The current implementation of MOUSER includes two models that involve multi-solute 
interactions: 1) parent-daughter decay chains, and 2) competitive cation exchange. 
 
2.6.1 Decay chain   
 
For some applications of interest, consideration of the production and transport of decay products 
may be necessary.  For this scenario, an ADR equation must be developed for each solute: 
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where the subscript i refers to the reaction product generated by the decay of solute i-1, and β is a 
production coefficient that can be decomposed as: 
 

( )( )111 ' −−− = iii f χβ      (2.27) 

 
where f’i-1 is the fraction of parent i undergoing sequential degradation to form transformation 
product i-1, and χi-1 is the stoichiometric conversion factor for the reaction. 
 
Two key simplifications are imposed by the form of Eq. 2.26: 1) the velocity and dispersion 
terms are assumed equal for all solutes, and 2) decay is assumed to occur only in the aqueous 
phase. 
 
2.6.2 Competitive cation exchange 
 
In addition to the single-solute sorption models previously considered, MOUSER includes an 
option for a competitive cation exchange model.  In the current implementation, binary 
equilibrium relationships are expressed in terms of the “reference solute” C1, which is assumed 
to be monovalent.  For each of the remaining solutes, the governing equilibrium relationship is 
expressed using the Gaines-Thomas convention   
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where a represents the aqueous phase activity, y is the sorbed phase activity, m is the charge of 
solute i, and KNa,i is the equilibrium constant.  
 
The aqueous phase activity is the product of the concentration and an activity correction based on 
the Davies equation (e.g., Stumm and Morgan, 1998): 
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where ci is the solute molar concentration and I is the ionic strength. 
 
In MOUSER, the independent variables are typically restricted to the cations of interest, and the 
ionic strength is calculated by: 
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where zj is the charge associated with cation j, and An is the background anion ionic strength 
(supplied as input to the model). 
 
The sorbed phase activity is calculated using the Gaines-Thomas convention: 
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where q is the sorbed phase mass fraction (moles/kg) of species i, N is the equivalents per mole, 
and Q is the total cation exchange capacity (eq/kg). 
 
The cation exchange capacity is calculated from the initial sorbed ion concentrations: 
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where qi0 is the initial sorbed phase mass fraction for species i. 
 
2.7 Contaminant flux 
 
Solutions of the ADR equation for advection-dominated problems are usually expressed in terms 
of spatial and temporal concentration profiles.  As discussed in Chapter 1, a flux-based solution 
may be of greater interest for diffusion-dominated problems.  The governing expression for the 
instantaneous contaminant flux (f): 
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where f has units of mass per area per time. 
 
Eq. 2.33 is usually evaluated at the domain exit (x = L).  The cumulative mass released from the 
domain is readily evaluated by analytical or numerical integration of the flux expression: 
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where mcum is the cumulative mass per unit area crossing the plane of interest (x = L) during the 
time period of interest (t). 
 
2.7 Sorbed concentrations 
 
For some problems of interest, MOUSER can be configured to output the sorbed or total 
concentrations.  The sorbed phase mass fraction (S) is computed using the appropriate sorption 
model.  For the cation exchange model, the following conversion is used: 
 

   MqS 1000=       (2.35) 
 
where the sorbed phase mass fractions S and q are typically expressed in mg/kg and moles/kg, 
respectively and M is the solute molecular weight. 
 
The total concentration (CT) includes both the aqueous concentration and sorbed mass fraction, 
and corresponds more closely to concentrations that might be measured by extraction procedures 
performed on soil samples from the field or experimental columns.  The following expression is 
used to calculate CT: 
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2.10 Solution methods and limitations 
 
MOUSER utilizes a common input format and three computational approaches for solving the 
ADR: (1) analytical (closed-form) solutions for concentration and flux, including solutions that 
require numerical integration and/or differentiation, (2) “finite layer” solutions for concentration 
and flux, based on a numerical inversion of the Laplace-transformed solutions, and (3) numerical 
solutions for concentration and flux, based on a split-operator grid-based (finite element or finite 
difference) solution.  The user may specify the desired solution technique in the input.  If the user 
specifies input parameters incompatible with the available solution algorithms, an error message 
is generated. 
 
2.10.1 Analytical solutions 
 
Closed-form solutions are available for a number of idealized scenarios, as delineated in Chapter 
7 and Appendix I.  In general, the following conditions are not addressed by the analytical 
models: 

• Multi-solute parent/daughter decay or cation exchange  
• Nonlinear sorption isotherms  
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• Mixing-zone or zero-gradient exit boundary conditions  
 
Where feasible, the use of an analytical solution is usually desirable because of faster 
computation and greater accuracy.   
   
2.10.2 Finite layer solutions 
 
The “finite layer” solutions are based on the numerical inversion of the Laplace-transformed 
solution, as developed by extensions to the algorithms of Rowe and Booker (1985), who 
popularized the term.  Details of the method are described in Chapter 8 and Appendix II.  The 
finite layer algorithms incorporate most of the available boundary condition combinations, as 
well as the formation and transport of reaction products.  As with the analytical model, sorption 
is considered only for the case of a single-solute linear isotherm.  Also, nonzero initial conditions 
are not supported in the current version. 
 
In general, the finite layer algorithms are very accurate and require reduced computation because 
temporal and spatial discretization are not required.  They are typically used when the required 
boundary conditions are not supported by the analytical models, or for multi-solute scenarios that 
incorporate linear isotherms.   
 
2.10.3 Numerical solutions 
 
The current numerical model is based on a split-operator finite element method, as described by 
Miller and Rabideau (1993) and Rabideau and Khandelwal (1998a).  Although the numerical 
model typically requires considerably more computational time than the other methods, the split-
operator approach is well suited for the consideration of nonlinear reactions.  The current 
implementation incorporates all of the features associated with the other models, with the 
additional capability of handling nonlinear isotherms. The primary advantage of the numerical 
model is the capability of extension to other nonlinear reactions, as well as nonuniform parameter 
distributions.  Details of the numerical model are provided in Chapter 9 and Appendices III-IV. 
The primary disadvantage of the numerical solution is the lengthy execution times required for 
some problems. 
 
At the time of this writing, two additional numerical modules are under development: 1) an 
explicit finite difference algorithm, and 2) a second-order total variation diminishing scheme.  
Because these explicit algorithms are being implemented for primary application in a parallel 
computing environment, several approaches are implemented for the various reactions.  Further 
details regarding these algorithms will be included in Part II of the User’s Manual as they become 
available. 
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NOTATION 
 
ζ integration variable 
α sorption rate coefficient (T-1) 
β fractional production coefficient  
λa lumped first-order decay coefficient (T-1)  
λs decay coefficient for the contaminant source (T-1)  
ρb bulk density (M L-3) 
µa first-order decay coefficient for the aqueous phase (T-1) 
µs first-order decay coefficient for the sorbed phase (T-1) 
χ stoichiometric conversion factor 
 
A area (L2) 
An background anionic activity for cation exhange model (moles/liter) 
al longitudinal dispersivity (L) 
b Langmuir and Toth isotherm parameter (dimensionless) 
B vertical thickness of the aquifer (L) 
C dissolved phase contaminant concentration (ML-3) 
Ci initial concentration (M L-3) 
C0 concentration at the entrance boundary (M L-3) 
Cr Courant number (dimensionless) 
D dispersion coefficient (L2T-1) 
DaI type 1 Damkohler number (dimensionless) 
DaII type 2 Damkohler number (dimensionless) 
Dd contaminant liquid diffusion coefficient (L2T-1) 
D dispersion coefficient (L2T-1) 
f instantaneous contaminant flux (MT-1L-2) 
f’i-1 fraction of parent undergoing sequential degradation 
hb x-dimension of the transition zone (L) 
Hf the width in the x-direction (L) 
Hp diffusion hindrance factor (dimensionless) 
i hydraulic gradient (dimensionless) 
K hydraulic conductivity (LT-1) 
Kd linear distribution coefficient (L3M-1) 
kf forward (sorption) rate coefficient 
Kf Freundlich parameter (dimensionless) 
kr  reverse (desorption) rate coefficient 
L domain thickness (L) 
M solute molecular weight (g/mole) 
mcum cumulative mass per unit area (ML-2) 
n porosity (dimensionless) 
na porosity of aquifer (dimensionless) 
nb porosity of exit mixing zone (dimensionless) 
nf  Freundlich parameter (dimensionless) 
nT third Toth parameter (dimensionless) 
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Pe Peclet number (dimensionless) 
q sorbed phase mass fraction for cation exchange (moles/g) 
Q pumping rate (L3T-1) 
Q0 Langmuir and Toth isotherm parameter (dimensionless) 
Ra  aquifer retardation factor (dimensionless) 
Rf retardation factor (dimensionless) 
Rs retardation factor for the source zone (dimensionless) 
S sorbed phase mass fraction (dimensionless, typically mg/kg) 
Se sorbed phase mass fraction in equilibrium with C (dimensionless) 
t time (T) 
V volume of the pore fluid in the source zone (L3) 
v fluid velocity in barrier (LT-1) 
va  fluid velocity in the aquifer(LT-1) 
vb velocity of groundwater flushing the exit mixing zone (LT-1) 
Wb lateral dimension of the exit mixing zone (L) 
x distance (L) 
xa distance from exit face of the barrier (L) 
z charge associated with cationic species 


